MODUL 3 mPuP
Modul 3
COMMUNICATION
- Asistensi dilakukan 1x
- Praktikum dilakukan 1x
- Memahami cara penggunaan protokol komunikasi UART, SPI, dan I2C pada Development Board yang digunakan
- Memahami cara penggunaan komponen input dan output yang berkomunikasi secara UART, SPI, dan I2C pada Development Board yang digunakan
- Raspberry Pi Pico
- STM32F103C8
- LED
- Push Button
- LED RGB
- Touch Sensor
- LCD I2C 16 x 2
- Potensiometer
- Motor DC (Dinamo DC, Motor Servo, dan Motor Stepper)
- Mq-2
- LCD OLED
1.4.1 UART (Universal Asynchronous Receiver Transmitter)
UART (Universal Asynchronous Receiver-Transmitter) adalah bagian perangkat keras komputer yang menerjemahkan antara bit-bit paralel data dan bit-bit serial. UART biasanya berupa sirkuit terintegrasi yang digunakan untuk komunikasi serial pada komputer atau port serial perangkat periperal.
Data dikirimkan secara paralel dari data bus ke UART1. Pada UART1 ditambahkan start bit, parity bit, dan stop bit kemudian dimuat dalam satu paket data. Paket data ditransmisikan secara serial dari Tx UART1 ke Rx UART2. UART2 mengkonversikan data dan menghapus bit tambahan, kemudia di transfer secara parallel ke data bus penerima.
1.4.2 I2C (Inter-Integrated Circuit)
Inter Integrated Circuit atau sering disebut I2C adalah standar komunikasi serial dua arah menggunakan dua saluran yang didisain khusus untuk mengirim maupun menerima data. Sistem I2C terdiri dari saluran SCL (Serial Clock) dan SDA (Serial Data) yang membawa informasi data antara I2C dengan pengontrolnya.
Pada I2C, data ditransfer dalam bentuk message yang terdiri dari kondisi start, Address Frame, R/W bit, ACK/NACK bit, Data Frame 1, Data Frame 2, dan kondisi Stop. Kondisi start dimana saat pada SDA beralih dari logika high ke low sebelum SCL. Kondisi stop dimana saat pada SDA beralih dari logika low ke high sebelum SCL.
R/W bit berfungsi untuk menentukan apakah master mengirim data ke slave atau meminta data dari slave. (logika 0 = mengirim data ke slave, logika 1 = meminta data dari slave) ACK/NACK bit berfungsi sebagai pemberi kabar jika data frame ataupun address frame telah diterima receiver
1.4.3 SPI (Series Peripheral Interface)
Serial Peripheral Interface (SPI) merupakan salah satu mode komunikasi serial synchronous berkecepatan tinggi yang dimiliki oleh STM32F407VGT6 dan Raspberry Pi Pico. Komunikasi SPI membutuhkan 3 jalur utama yaitu MOSI, MISO, dan SCK, serta jalur tambahan SS/CS. Melalui komunikasi ini, data dapat saling dikirimkan baik antara mikrokontroler maupun antara mikrokontroler dengan perangkat periferal lainnya.
• MOSI (Master Output Slave Input)
Jika dikonfigurasi sebagai master, maka pin MOSI berfungsi sebagai output. Sebaliknya, jika dikonfigurasi sebagai slave, maka pin MOSI berfungsi sebagai input.
• MISO (Master Input Slave Output)
Jika dikonfigurasi sebagai master, maka pin MISO berfungsi sebagai input. Sebaliknya, jika dikonfigurasi sebagai slave, maka pin MISO berfungsi sebagai output.
• SCLK (Serial Clock)
Jika dikonfigurasi sebagai master, maka pin SCLK bertindak sebagai output untuk memberikan sinyal clock ke slave. Sebaliknya, jika dikonfigurasi sebagai slave, maka pin SCLK berfungsi sebagai input untuk menerima sinyal clock dari master.
• SS/CS (Slave Select/Chip Select)
Jalur ini digunakan oleh master untuk memilih slave yang akan dikomunikasikan. Pin SS/CS harus dalam keadaan aktif (umumnya logika rendah) agar komunikasi dengan slave dapat berlangsung.
Sinyal clock dialirkan dari master ke slave yang berfungsi untuk sinkronisasi. Master dapat memilih slave mana yang akan dikirimkan data melalui slave select, kemudian data dikirimkan dari master ke slave melalui MOSI. Jika master butuh respon data maka slave akan mentransfer data ke master melalui MISO.
1.4.5 Raspberry Pi Pico
Raspberry Pi Pico adalah papan rangkaian elektronik yang di dalamnya terdapat komponen utama chip mikrokontroler RP2040, yang dirancang dan diproduksi oleh Raspberry Pi Foundatio. Tidak seperti komputer mini raspberry Pi lainnya yang menjalankan sistem operasi seperti Linux, Pico dirancang untuk tugas-tugas yang lebih sederhana dan langsung (embedded system), seperti membaca sensor, mengontrol perangkat, atau melakukan pengolahan data pada tingkat hardware.
Adapun spesifikasi dari Raspberry Pi Pico adalah sebagai berikut:
Microcontroller RP2040 |
Operating Voltage 3.3 V |
Input Voltage (recommended) 5 V via USB |
Input Voltage (limit) 1.8–5.5 V |
Digital I/O
Pins 26 GPIO
pins |
PWM Digital I/O Pins 16 |
Analog Input
Pins 3 |
DC Current per I/O Pin 16 mA |
DC Current for 3.3V Pin 300 mA |
Flash Memory 2 MB on-board QSPI
Flash |
SRAM 264
KB |
Clock Speed Hingga 133 MHz |
1.1.1 STM32F103C8
STM32F103C8 adalah mikrokontroler berbasis ARM Cortex-M3 yang dikembangkan oleh STMicroelectronics. Mikrokontroler ini sering digunakan dalam pengembangan sistem tertanam karena kinerjanya yang baik, konsumsi daya yang rendah, dan kompatibilitas dengan berbagai protokol komunikasi. Pada praktikum ini, kita menggunakan STM32F103C8 yang dapat diprogram menggunakan berbagai metode, termasuk komunikasi serial (USART), SWD (Serial Wire Debug), atau JTAG untuk berhubungan dengan komputer maupun perangkat lain. Adapun spesifikasi dari STM32F4 yang digunakan dalam praktikum ini adalah sebagai berikut:
Gambar 3. STM32F103C8
Microcontroller ARM Cortex-M3 |
Operating Voltage 3.3
V |
Input Voltage (recommended) 5 V |
Input Voltage (limit) 2 – 3.6 V |
Digital I/O Pins 37 |
PWM Digital I/O Pins 15 |
Analog Input Pins 10 (dengan resolusi 12-bit ADC) |
DC Current per I/O Pin 25 mA |
DC Current for 3.3V Pin 150
mA |
Flash Memory 64
KB |
SRAM 20
KB |
EEPROM Emulasi dalam
Flash |
Clock Speed 72
MHz |
A. BAGIAN-BAGIAN PENDUKUNG
1. Raspberry Pi Pico
1. RAM (Random
Access Memory)
Raspberry Pi Pico dilengkapi dengan 264KB SRAM on-chip. Kapasitas RAM
yang lebih besar ini memungkinkan Pico menjalankan aplikasi yang lebih kompleks
dan menyimpan data lebih banyak.
2. Memori Flash Eksternal
Raspberry Pi Pico tidak memiliki
ROM tradisional. Sebagai
gantinya, ia menggunakan memori flash eksternal. Kapasitas memori flash ini dapat bervariasi, umumnya antara 2MB
hingga 16MB, tergantung pada konfigurasi. Memori flash ini digunakan untuk
menyimpan firmware dan program pengguna. Penggunaan memori flash eksternal pada
Pico memberikan fleksibilitas lebih besar dalam hal kapasitas penyimpanan program.
3. Crystal Oscillator
Raspberry Pi Pico menggunakan crystal oscillator untuk menghasilkan
sinyal clock yang stabil. Sinyal
clock ini penting
untuk mengatur kecepatan operasi mikrokontroler
dan komponen lainnya.
4. Regulator Tegangan
Untuk memastikan pasokan
tegangan yang stabil
ke mikrokontroler.
5. Pin GPIO (General Purpose
Input/Output):
Untuk menghubungkan Pico ke berbagai perangkat eksternal seperti
sensor, motor, dan LED.
2. STM32
1. RAM (Random
Access Memory)
STM32F103C8 dilengkapi dengan 20KB SRAM on-chip. Kapasitas RAM ini
memungkinkan mikrokontroler menjalankan berbagai aplikasi serta
menyimpan data sementara selama eksekusi program.
2. Memori Flash Internal
STM32F103C8 memiliki memori flash internal sebesar 64KB atau 128KB,
yang digunakan untuk menyimpan firmware dan program pengguna. Memori ini
memungkinkan penyimpanan kode program secara permanen tanpa memerlukan media
penyimpanan eksternal.
3. Crystal Oscillator
STM32F103C8 menggunakan crystal oscillator eksternal (biasanya 8MHz)
yang bekerja dengan PLL untuk meningkatkan frekuensi clock hingga
72MHz. Sinyal clock yang stabil ini penting untuk
mengatur kecepatan operasi mikrokontroler dan komponen lainnya.
4. Regulator Tegangan
STM32F103C8 memiliki sistem pengaturan tegangan internal yang
memastikan pasokan daya stabil ke mikrokontroler. Tegangan operasi yang
didukung berkisar antara 2.0V hingga 3.6V.
5. Pin GPIO (General Purpose
Input/Output)
STM32F103C8 memiliki hingga 37 pin GPIO yang dapat digunakan untuk menghubungkan berbagai perangkat eksternal seperti sensor, motor, LED, serta komunikasi dengan antarmuka seperti UART, SPI, dan I²C.
Komentar
Posting Komentar